Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(1)2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36680202

RESUMO

Cyprinid herpesvirus 3 (CyHV-3) can cause severe disease in koi and common carp (Cyprinus carpio). Currently, no effective treatment is available against CyHV-3 infection in koi. Both LSD1 and JMJD2 are histone demethylases (HD) and are critical for immediate-early (IE) gene activation essential for lytic herpesvirus replication. OG-L002 and ML324 are newly discovered specific inhibitors of LSD1 and JMJD2, respectively. Here, HD inhibitors were compared with acyclovir (ACV) against CyHV-3 infection in vitro and in vivo. ML324, at 20-50 µM, can completely block ~1 × 103 PFU CyHV-3 replication in vitro, while OG-L002 at 20 µM and 50 µM can produce 96% and 98% inhibition, respectively. Only about 94% inhibition of ~1 × 103 PFU CyHV-3 replication was observed in cells treated with ACV at 50 µM. As expected, CyHV-3 IE gene transcription of ORF139 and ORF155 was blocked within 72 h post-infection (hpi) in the presence of 20 µM ML324. No detectable cytotoxicity was observed in KF-1 or CCB cells treated for 24 h with 1 to 50 µM ML324. A significant reduction of CyHV-3 replication was observed in ~6-month-old infected koi treated with 20 µM ML324 in an immersion bath for 3-4 h at 1-, 3-, and 5-days post-infection compared to the control and ACV treatments. Under heat stress, 50-70% of 3-4-month-old koi survived CyHV-3 infection when they were treated daily with 20 µM ML324 in an immersion bath for 3-4 h within the first 5 d post-infection (dpi), compared to 11-19% and 22-27% of koi in the control and ACV treatments, respectively. Our study demonstrates that ML324 has the potential to be used against CyHV-3 infection in koi.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Herpesviridae , Herpesviridae , Animais , Aciclovir/farmacologia , Infecções por Herpesviridae/tratamento farmacológico , Infecções por Herpesviridae/veterinária , Herpesviridae/genética , Doenças dos Peixes/tratamento farmacológico
2.
Ecology ; 102(8): e03434, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34114663

RESUMO

Understanding the mechanisms of spatial variation of biological invasions, across local-to-global scales, has been a major challenge. The importance of evolutionary history for invasion dynamics was noted by Darwin, and several studies have since considered how biodiversity of source and recipient regions can influence the probability of invasions. For over a century, the Panama Canal has connected water bodies and biotas with different evolutionary histories, and created a global shipping hot spot, providing unique opportunities to test mechanisms that affect invasion patterns. Here, we test for asymmetry in both the extent of invasions and predation effects, a possible mechanism of biotic resistance, between two tropical oceans at similar latitudes. We estimated nonnative species (NNS) richness for sessile marine invertebrates, using standardized field surveys and literature synthesis, to examine whether invasions are asymmetrical, with more NNS present in the less diverse Pacific compared to the Atlantic. We also experimentally tested whether predation differentially limits the abundance and distribution of these invertebrates between oceans. In standardized surveys, observed total NNS richness was higher in the Pacific (18 NNS, 30% of all Pacific species) than the Atlantic (11 NNS, 13% of all Atlantic species). Similarly, literature-based records also display this asymmetry between coasts. When considering only the reciprocal exchange of NNS between Atlantic and Pacific biotas, NNS exchange from Atlantic to Pacific was eightfold higher than the opposite direction, exceeding the asymmetry predicted by random exchange based simply on differences of overall diversity per region. Predation substantially reduced biomass and changed NNS composition in the Pacific, but no such effects were detected on the Atlantic coast. Specifically, some dominant NNS were particularly susceptible to predation in the Pacific, supporting the hypothesis that predation may reduce the abundance of certain NNS here. These results are consistent with predictions that high diversity in source regions, and species interactions in recipient regions, shape marine invasion patterns. Our comparisons and experiments across two tropical ocean basins, suggest that global invasion dynamics are likely driven by both ecological and evolutionary factors that shape susceptibility to and directionality of invasions across biogeographic scales.


Assuntos
Biodiversidade , Invertebrados , Animais , Organismos Aquáticos , Oceanos e Mares , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...